

Published on Web 10/25/2006

Synthesis of Benzonorcaradienes by Gold(I)-Catalyzed [4+3] Annulation

David J. Gorin, Pascal Dubé, and F. Dean Toste*

Department of Chemistry, University of California, Berkeley, California 94720 Received September 16, 2006; E-mail: fdtoste@berkeley.edu

Transition metal-catalyzed sequential carbon-carbon bondforming reactions provide a means to achieve increased synthetic efficiency.¹ To this end, we were drawn to the possibility of combining mechanistically distinct transition metal-catalyzed reactions of acetylenes, whereby an alkyne is generated as a result of the first reaction in a sequence. We envisioned that this might be accomplished by employing propargyl ester-containing diynes² in an intermolecular cyclopropanation³—intramolecular hydroarylation⁴ cascade (eq 1). It is crucial that the catalyst control the timing of the sequential events, the regio- and diastereoselectivity of the cyclopropanation, and the regioselectivity of the hydroarylation step.⁵ Herein we report the application of this concept to the development of an expedient synthesis of benzonorcaradienes⁶ in which three carbon-carbon bonds and two rings are formed in a single operation.

Recently, propargyl ester-containing diynes have been employed in a number of rearrangement reactions,² including the formation of cyclopropanes by an intramolecular cycloisomerization;^{2c} however, intermolecular cyclopropanation by related diynes was not observed even in the presence of excess ethyl vinyl ether.^{2a} We were therefore pleased to find that under the conditions developed for the gold(I)-catalyzed intermolecular cyclopropanation with propargyl esters,^{3c} diyne **1** reacted smoothly with styrene to afford cyclopropane **2b** in 83% yield and with excellent cis-diastereo- and regioselectivity (Table 1, entry 1). Subsequently, treatment of **2b** under identical reaction conditions, but for 16 h, afforded benzonorcaradiene **2a** in 87% yield.

Consistent with these results, an increase in reaction time produced **2a** in 72% yield from diyne **1** and styrene in a single operation (entry 2).⁷ While gold(I)chloride and gold(III)chloride also proved efficient catalysts for the cyclopropanation, they did not promote the intramolecular hydroarylation reaction (entries 3 and 4). Platinum complexes also catalyzed the cyclopropanation, albeit with modest diastereoselectivity (entries 5 and 6), and attempts to employ ruthenium-based catalysts resulted in poor conversion (entry 7) or formation of a complex mixture (entry 8). Finally, no reaction occurred in the presence of other cationic group 11 metal complexes (entries 9 and 10).

With a suitable catalyst in hand, the substrate scope of the benzonorcaradiene synthesis was examined (Table 2). A variety of styrene derivatives were tolerated in the reaction, although the hydroarylation step is particularly sensitive to electronic perturbation. For example, while alkyl substitution on the aryl ring resulted in good yields of the benzonorcaradiene (entries 2 and 3), halogenated styrenes required slightly elevated temperatures to produce the [4+3]-annulation products (entries 4 and 5). Tetracyclic norcaradienes (entries 6 and 7) were readily prepared from vinylnaphthylene or vinylindole in 74% and 54% yield, respectively. Notably, the regioselectivity of the hydroarylation reaction is

Table 1. Catalysts for [4+3] Annulation Reaction

BZO 1 catalyst, 4 eq. styrene BZO 2a 2b BZO 2b bzO 2b (yield, cis/trans)

enuy	catalyst	conditions	za (yield)	ZD (yield, cis/trains)
1	5% Ph ₃ PAuCl,	MeNO ₂ , rt, 15 min		83% (>20:1 dr)
	5% AgSbF ₆			
2	5% Ph ₃ PAuCl,	MeNO2, rt, 16 h	72%	
	5% AgSbF ₆			
3	5% AuCl	MeNO2, rt, 16 h		71% (>20:1 dr)
4	5% AuCl ₃	MeNO ₂ , rt, 16 h		66% (>20:1 dr)
5	5% PtCl ₂	PhCH ₃ , 80 °C, 16 h		59% (1.2:1 dr)
6	5% PtCl ₂ , CO (1 atm)	PhCH ₃ , 80 °C, 16 h		33% (1.25:1 dr)
7	2.5% [RuCl ₂ (CO) ₃] ₂	DCE, 50 °C, 16 h		13% (>20:1 dr)
8	2.5% [RuCl ₂ (CO) ₃] ₂ ,	PhCH ₃ , 80 °C, 16 h		
	5% AgOTf			
9	5% AgSbF ₆	MeNO ₂ , rt, 16 h		
10	5% Cu(CH ₃ CN) ₄ PF ₆	DCE, 50 °C, 16 h		

excellent (entries 4–7). Quaternary centers can be formed from the gold(I)-catalyzed annulation of 1,1-disubstituted and trisubtituted olefins (entries 8 and 9). Gold(I)-catalyzed reaction of **1** with *trans*- β -methylstyrene proceeded at room temperature to afford **11a** as a single diastereomer (eq 2). In sharp contrast, the reaction with *cis*- β -methylstyrene afforded only *cis*-**11b** at room temperature and therefore required slightly elevated temperatures to furnish **11a** as a mixture of diastereomers.⁸

The diyne component can also be varied. For example, the trit-butylphosphinegold(I)-catalyzed reaction of benzylic ester **12** afforded benzonorcaradiene **13a** as a 19:1 mixture of olefin isomers (eq 3). While nonterminal propargyl esters were not viable substrates for the intermolecular cyclopropanation,³ we were pleased to find that ester-substituted diyne **14** could be employed in the gold(I)-catalyzed annulation reaction; however, sequential gold(I)chloride-catalyzed cyclopropanation and phosphinegold(I)-catalyzed hydroarylation proved most efficient for the preparation of ester-substituted norcaradiene **15a** (eq 4).

A mechanism involving sequential rearrangements proceeding via gold(I)-promoted alkyne activation is proposed (Scheme 1). Reaction of cationic phosphinegold(I) with divne **1** generates Au-

^a (A) propargyl ester (0.2 M in nitromethane), alkene (4 equiv), room temperature; (B) propargyl ester (0.2 M in dichloroethane), alkene (4 equiv), 50 °C. ^b Composed of a 10:1 mixture of regioisomers.

Scheme 1. Mechanistic Hypothesis

carbenoid intermediate 16. The catalyst can reversibly coordinate to either alkyne in 1, and thus two plausible pathways for the formation of 16 can be envisioned: one involving a 1,3-metallotropic rearrangement² of Au-carbene **17** and the other proceeding via a cumulene intermediate. Either way, cyclopropanation of styrene occurs selectively through carbenoid 16, affording 2b and regenerating the catalyst. Coordination of cationic phosphinegold-(I) to the alkyne of **2b** induces nucleophilic trapping by the arene onto the alkyne. Proton transfer furnishes benzonorcaradiene 2a from vinylgold(I) intermediate 18 and regenerates the catalyst.9

In conclusion, we have developed a cationic phosphinegold(I)catalyzed tandem cyclopropanation/hydroarylation reaction,¹⁰ which produces formal [4+3]-annulation products from vinyl arenes and propargyl esters. The cyclopropanation represents the first intermolecular reaction of divnyl esters and proceeds with excellent regio- and diastereocontrol.11 The reaction provides access to a wide range of functionalized benzonorcaradienes with synthetic handles for further manipulation.¹² Further studies on the properties of these analogues and other reactions exploiting gold carbenoid intermediates will be reported in due course.

Acknowledgment. We gratefully acknowledge the University of California, Berkeley, NIHGMS (Grant R01 GM073932-01), Merck Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont, GlaxoSmithKline, Eli Lilly & Co., Pfizer, AstraZeneca, Abbott, and Roche for financial support.

Supporting Information Available: Experimental procedures, compound characterization, and X-ray structure data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Reviews: (a) Tietze, L. F. Chem. Rev. **1996**, *96*, 115. (b) Ajamain, A.; Gleason, J. L. Angew. Chem., Int. Ed. **2004**, *43*, 3754. (c) Wasilike, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. **2005**, *105*, 1001. (a) Ohe, K.; Fujita, M.; Matsumoto, H.; Tai, Y.; Miki, K. J. Am. Chem.
- Soc. 2006, 128, 9271. (b) Cho, E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3047. (c) López, S.; Herrero-Gomez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echvarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029.
- (a) Miki, K.; Ohe, K.; Uemura, S. *J. Org. Chem.*, *int.* Ed. 2003, 44, 2019. (b)
 Miki, K.; Ohe, K.; Uemura, S. *J. Org. Chem.* 2003, 68, 8505. (c)
 Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. *J. Am. Chem.* (3)Soc. 2005, 127, 18002
- (4) For examples of gold-catalyzed intramolecular hydroarylation, see (a) Nevado, C.; Echavarren, A. M. Chem. Eur. J. 2005, 11, 3155. (b) Hashmi, Version of the second seco Nevado, C., Echavanen, A. M. Chem, Eur. 5 4005, 11, 5155, 69 Hassann, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709. (c) Hashmi, A. S. K.; Haufe, P.; Schmid, C.; Rivas Nass, A.; Frey, W. Chem.-Eur. J. 2006, 12, 5376. For examples of related reactions catalyzed by other metals see (d) Chatani, N.; Inoue, H.; Ikeda, T; Murai, S. J. Org. Chem. 2000, 65, 4913. (e) Inoue, H.; Chatani, N.;
 Murai, S. J. Org. Chem. 2002, 67, 414. Pt: (f) Pastine, S. J.; Youn, S.
 W.; Sames, D. Org. Lett. 2003, 5, 1055. (g) Fürstner, A.; Mamane, V. J.
 Org. Chem. 2002, 67, 6264. (h) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556. For a review, see (i) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167
- Soriano, E.; Marco-Contelles, J. Organometallics 2006, 25, 4542.
- Benzonorcaradienes are generally prepared by the Buchner reaction: (a) Manitto, P.; Monti, D.; Speranzza, G. J. Org. Chem. **1995**, 60, 484. (b) Manitto, P.; Monti, D.; Zanzola, S.; Speranzza, G. J. Org. Chem. **1997**, **1997**, 62, 6658. (c) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Pillow, T. H. Chem. Commun. 1999, 1691. For an alternative synthesis see (d) Kusama, H.; Shiozawa, F.; Shido, M.; Iwasawa, N. Chem. Lett. 2002, 124
- (7) The acetate (55%, 1.2:1, a/b) and pivaloate (73%, 7:1, a/b) analogs of 1 were also effective in the cycloisomerization. The acetate analog of 2a was characterized by X-crystallography (see Supporting Information).
- (8) The isomerization presumably occurs by a norcaradiene/cycloheptatriene rearrangement: (a) Vogel, E.; Wendisch, D.; Roth, W. R. Angew. Chem., Int. Ed. 1964, 3, 443. (b) Pomerantz, M.; Gruber, G. W. J. Org. Chem. 1968, 33, 4501. We also observed epimerization in the annulation of cis- β -d-styrene.

(9) The detailed mechanism of the proton transfers remains unclear. A doublelabeled cross-over experiment showed very little scrambling in the hydroarylation reaction.

- (10) For recent examples of Au-catalyzed tandem processes, see (a) Hashmi, For recent examples of Au-catalyzed tandem processes, see (a) Hasnmi, A. S. K.; Grundl, L. *Tetrahedron* 2005, 61, 6231. (b) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925. (c) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (d) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. (e) Sherry, B. D.; Maus, L.; Lafortezza, B. N.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 8132. (f) Marion, M.; Diaz-González, S.; de Frémont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Let Ed 2006, 45247. (c) Jung H. H.; Eloraporto, P. F. Org. Lett 2006. Int. Ed. 2006, 45, 3647. (g) Jung, H.-H.; Floreancig, P. E. Org. Lett. 2006, 8, 1949. (h) Yao, X.; Li, C.-J. Org. Lett. 2006, 8, 1953. (i) Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. **2006**, *8*, 1957. (j) Nguyen, R. V.; Yao, X.; Li, C.-J. Org. Lett. **2006**, *8*, 2387. (k) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. **2006**, *128*, 12614.
- trans-Alkynylcyclopropane could only be observed as a minor product in a single case (Table 2, entry 9). See Supporting Information for For example, the end ester of 2a was selectively oxidized to 25 and
- (12)cleaved to give aldehyde 26.

JA066694E